|
@@ -0,0 +1,220 @@
|
|
|
+/*
|
|
|
+ Taken from https://gist.github.com/mstum/63a6e3e8cf54e8ae55b6aa28ca6f20c5
|
|
|
+
|
|
|
+ Modified slightly to remove the need for unsafe and changed namespace to plugin namespace
|
|
|
+*/
|
|
|
+using System;
|
|
|
+using System.Collections.Generic;
|
|
|
+
|
|
|
+namespace COM3D2.MeidoPhotoStudio.Plugin
|
|
|
+{
|
|
|
+ /// <summary>
|
|
|
+ /// A string comparer that behaves like StrCmpLogicalW
|
|
|
+ /// https://msdn.microsoft.com/en-us/library/windows/desktop/bb759947
|
|
|
+ ///
|
|
|
+ /// This means:
|
|
|
+ /// * case insensitive (ZA == za)
|
|
|
+ /// * numbers are treated as numbers (z20 > z3) and assumed positive
|
|
|
+ /// (-100 comes AFTER 10 and 100, because the minus is seen
|
|
|
+ /// as a char, not as part of the number)
|
|
|
+ /// * leading zeroes come before anything else (z001 < z01 < z1)
|
|
|
+ ///
|
|
|
+ /// Note: Instead of instantiating this, you can also use
|
|
|
+ /// <see cref="Comparison(string, string)"/>
|
|
|
+ /// if you don't need an <see cref="IComparer{string}"/> but can
|
|
|
+ /// use a <see cref="Comparison{string}"/> delegate instead.
|
|
|
+ /// </summary>
|
|
|
+ /// <remarks>
|
|
|
+ /// NOTE: This behaves slightly different than StrCmpLogicalW because
|
|
|
+ /// it handles large numbers.
|
|
|
+ ///
|
|
|
+ /// At some point, StrCmpLogicalW just gives up trying to parse
|
|
|
+ /// something as a number (see the Test cases), while we keep going.
|
|
|
+ /// Since we want to sort lexicographily as much as possible,
|
|
|
+ /// that difference makes sense.
|
|
|
+ /// </remarks>
|
|
|
+ public class LexicographicStringComparer : IComparer<string>
|
|
|
+ {
|
|
|
+ /// <summary>
|
|
|
+ /// A <see cref="Comparison{string}"/> delegate.
|
|
|
+ /// </summary>
|
|
|
+ public static int Comparison(string x, string y)
|
|
|
+ {
|
|
|
+ // 1 = x > y, -1 = y > x, 0 = x == y
|
|
|
+ // Rules: Numbers < Letters. Space < everything
|
|
|
+ if (x == y) return 0;
|
|
|
+ if (string.IsNullOrEmpty(x) && !string.IsNullOrEmpty(y)) return -1;
|
|
|
+ if (!string.IsNullOrEmpty(x) && string.IsNullOrEmpty(y)) return 1;
|
|
|
+ if (string.IsNullOrEmpty(x) && string.IsNullOrEmpty(y)) return 0; // "" and null are the same for the purposes of this
|
|
|
+
|
|
|
+ var yl = y.Length;
|
|
|
+ for (int i = 0; i < x.Length; i++)
|
|
|
+ {
|
|
|
+ if (yl <= i) return 1;
|
|
|
+ var cx = x[i];
|
|
|
+ var cy = y[i];
|
|
|
+
|
|
|
+ if (Char.IsWhiteSpace(cx) && !Char.IsWhiteSpace(cy)) return -1;
|
|
|
+ if (!Char.IsWhiteSpace(cx) && Char.IsWhiteSpace(cy)) return 1;
|
|
|
+
|
|
|
+ if (IsDigit(cx))
|
|
|
+ {
|
|
|
+ if (!IsDigit(cy))
|
|
|
+ {
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Both are digits, but now we need to look at them as a whole, since
|
|
|
+ // 10 > 2, but 10 > 002 > 02 > 2
|
|
|
+ var numCmp = CompareNumbers(x, y, i, out int numChars);
|
|
|
+ if (numCmp != 0) return numCmp;
|
|
|
+ i += numChars; // We might have looked at more than one char, e.g., "10" is 2 chars
|
|
|
+ }
|
|
|
+ else if (IsDigit(cy))
|
|
|
+ {
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ // Do this after the digit check
|
|
|
+ // Case insensitive
|
|
|
+ // Normalize to Uppercase:
|
|
|
+ // https://docs.microsoft.com/en-US/visualstudio/code-quality/ca1308-normalize-strings-to-uppercase
|
|
|
+ var cmp = Char.ToUpper(cx).CompareTo(Char.ToUpper(cy));
|
|
|
+ if (cmp != 0) return cmp;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Strings are equal to that point, and y is at least as large as x
|
|
|
+ if (y.Length > x.Length) return -1;
|
|
|
+
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <see cref="IComparer{T}.Compare(T, T)"/>
|
|
|
+ public int Compare(string x, string y)
|
|
|
+ => Comparison(x, y);
|
|
|
+
|
|
|
+ private static int CompareNumbers(string x, string y, int ix, out int numChars)
|
|
|
+ {
|
|
|
+ var xParsed = ParseNumber(x, ix);
|
|
|
+ var yParsed = ParseNumber(y, ix);
|
|
|
+
|
|
|
+ numChars = yParsed.NumCharsRead > xParsed.NumCharsRead
|
|
|
+ ? xParsed.NumCharsRead
|
|
|
+ : yParsed.NumCharsRead;
|
|
|
+
|
|
|
+ return xParsed.CompareTo(yParsed);
|
|
|
+ }
|
|
|
+
|
|
|
+ private static ParsedNumber ParseNumber(string str, int offset)
|
|
|
+ {
|
|
|
+ var result = 0;
|
|
|
+ var numChars = 0;
|
|
|
+ var leadingZeroes = 0;
|
|
|
+ var numOverflows = 0;
|
|
|
+ bool countZeroes = true;
|
|
|
+
|
|
|
+ for (int j = offset; j < str.Length; j++)
|
|
|
+ {
|
|
|
+ char c = str[j];
|
|
|
+ if (IsDigit(c))
|
|
|
+ {
|
|
|
+ var cInt = (c - 48); // 48/0x30 is '0'
|
|
|
+
|
|
|
+ checked
|
|
|
+ {
|
|
|
+ long tmp = (result * 10L) + cInt;
|
|
|
+ if (tmp > int.MaxValue)
|
|
|
+ {
|
|
|
+ numOverflows++;
|
|
|
+ tmp = tmp % int.MaxValue;
|
|
|
+ }
|
|
|
+ result = (int)tmp;
|
|
|
+ numChars++;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (cInt == 0 && countZeroes)
|
|
|
+ {
|
|
|
+ leadingZeroes++;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ countZeroes = false;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return new ParsedNumber(result, numOverflows, leadingZeroes, numChars);
|
|
|
+ }
|
|
|
+
|
|
|
+ private static bool IsDigit(char c) => (c >= '0' && c <= '9');
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// Note that the ParsedNumber is not very useful as a number,
|
|
|
+ /// but purely as a way to compare two numbers that are stored in a string.
|
|
|
+ /// </summary>
|
|
|
+ private struct ParsedNumber : IComparable<ParsedNumber>, IComparer<ParsedNumber>
|
|
|
+ {
|
|
|
+ /// <summary>
|
|
|
+ /// The remainder, that is, the part of the number that
|
|
|
+ /// didn't overflow int.MaxValue.
|
|
|
+ /// </summary>
|
|
|
+ public int Remainder;
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// How often did the number overflow int.MaxValue during parsing?
|
|
|
+ /// </summary>
|
|
|
+ public int Overflows;
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// How many leading zeroes were there in the string during parsing?
|
|
|
+ /// "001" has a LeadingZeroesCount of 2.
|
|
|
+ /// "100" has a LeadingZeroesCount of 0.
|
|
|
+ /// "010" has a LeadingZeroesCount of 1.
|
|
|
+ ///
|
|
|
+ /// This is important, because 001 comes before 01 comes before 1.
|
|
|
+ /// </summary>
|
|
|
+ public int LeadingZeroesCount;
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// How many characters were read from the input during parsing?
|
|
|
+ /// </summary>
|
|
|
+ public int NumCharsRead;
|
|
|
+
|
|
|
+ public ParsedNumber(int remainder, int overflows, int leadingZeroes, int numChars)
|
|
|
+ {
|
|
|
+ Remainder = remainder;
|
|
|
+ Overflows = overflows;
|
|
|
+ LeadingZeroesCount = leadingZeroes;
|
|
|
+ NumCharsRead = numChars;
|
|
|
+ }
|
|
|
+
|
|
|
+ public int Compare(ParsedNumber x, ParsedNumber y)
|
|
|
+ {
|
|
|
+ // Note: if numCharsX and Y aren't equal, this doesn't matter
|
|
|
+ // as the return value will be either -1 or 1 anyway
|
|
|
+
|
|
|
+ if (x.Overflows > y.Overflows) return 1;
|
|
|
+ if (x.Overflows < y.Overflows) return -1;
|
|
|
+
|
|
|
+ // 001 > 01 > 1
|
|
|
+ if (x.Remainder == y.Remainder)
|
|
|
+ {
|
|
|
+ if (x.LeadingZeroesCount > y.LeadingZeroesCount) return -1;
|
|
|
+ if (x.LeadingZeroesCount < y.LeadingZeroesCount) return 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (x.Remainder > y.Remainder) return 1;
|
|
|
+ if (x.Remainder < y.Remainder) return -1;
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ public int CompareTo(ParsedNumber other)
|
|
|
+ => Compare(this, other);
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|