|
@@ -1,222 +0,0 @@
|
|
-/*
|
|
|
|
- Taken from https://gist.github.com/mstum/63a6e3e8cf54e8ae55b6aa28ca6f20c5
|
|
|
|
-
|
|
|
|
- Modified slightly to remove the need for unsafe and changed namespace to plugin namespace
|
|
|
|
-*/
|
|
|
|
-using System;
|
|
|
|
-using System.Collections.Generic;
|
|
|
|
-
|
|
|
|
-namespace MeidoPhotoStudio.Plugin
|
|
|
|
-{
|
|
|
|
- /// <summary>
|
|
|
|
- /// A string comparer that behaves like StrCmpLogicalW
|
|
|
|
- /// https://msdn.microsoft.com/en-us/library/windows/desktop/bb759947
|
|
|
|
- ///
|
|
|
|
- /// This means:
|
|
|
|
- /// * case insensitive (ZA == za)
|
|
|
|
- /// * numbers are treated as numbers (z20 > z3) and assumed positive
|
|
|
|
- /// (-100 comes AFTER 10 and 100, because the minus is seen
|
|
|
|
- /// as a char, not as part of the number)
|
|
|
|
- /// * leading zeroes come before anything else (z001 < z01 < z1)
|
|
|
|
- ///
|
|
|
|
- /// Note: Instead of instantiating this, you can also use
|
|
|
|
- /// <see cref="Comparison(string, string)"/>
|
|
|
|
- /// if you don't need an <see cref="IComparer{string}"/> but can
|
|
|
|
- /// use a <see cref="Comparison{string}"/> delegate instead.
|
|
|
|
- /// </summary>
|
|
|
|
- /// <remarks>
|
|
|
|
- /// NOTE: This behaves slightly different than StrCmpLogicalW because
|
|
|
|
- /// it handles large numbers.
|
|
|
|
- ///
|
|
|
|
- /// At some point, StrCmpLogicalW just gives up trying to parse
|
|
|
|
- /// something as a number (see the Test cases), while we keep going.
|
|
|
|
- /// Since we want to sort lexicographily as much as possible,
|
|
|
|
- /// that difference makes sense.
|
|
|
|
- /// </remarks>
|
|
|
|
- public class LexicographicStringComparer : IComparer<string>
|
|
|
|
- {
|
|
|
|
- /// <summary>
|
|
|
|
- /// A <see cref="Comparison{string}"/> delegate.
|
|
|
|
- /// </summary>
|
|
|
|
- public static int Comparison(string x, string y)
|
|
|
|
- {
|
|
|
|
- // 1 = x > y, -1 = y > x, 0 = x == y
|
|
|
|
- // Rules: Numbers < Letters. Space < everything
|
|
|
|
- if (x == y) return 0;
|
|
|
|
- if (string.IsNullOrEmpty(x) && !string.IsNullOrEmpty(y)) return -1;
|
|
|
|
- if (!string.IsNullOrEmpty(x) && string.IsNullOrEmpty(y)) return 1;
|
|
|
|
- if (string.IsNullOrEmpty(x) && string.IsNullOrEmpty(y)) return 0; // "" and null are the same for the purposes of this
|
|
|
|
-
|
|
|
|
- var yl = y.Length;
|
|
|
|
- for (int i = 0; i < x.Length; i++)
|
|
|
|
- {
|
|
|
|
- if (yl <= i) return 1;
|
|
|
|
- var cx = x[i];
|
|
|
|
- var cy = y[i];
|
|
|
|
-
|
|
|
|
- if (Char.IsWhiteSpace(cx) && !Char.IsWhiteSpace(cy)) return -1;
|
|
|
|
- if (!Char.IsWhiteSpace(cx) && Char.IsWhiteSpace(cy)) return 1;
|
|
|
|
-
|
|
|
|
- if (IsDigit(cx))
|
|
|
|
- {
|
|
|
|
- if (!IsDigit(cy))
|
|
|
|
- {
|
|
|
|
- return -1;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // Both are digits, but now we need to look at them as a whole, since
|
|
|
|
- // 10 > 2, but 10 > 002 > 02 > 2
|
|
|
|
- var numCmp = CompareNumbers(x, y, i, out int numChars);
|
|
|
|
- if (numCmp != 0) return numCmp;
|
|
|
|
- i += numChars; // We might have looked at more than one char, e.g., "10" is 2 chars
|
|
|
|
- }
|
|
|
|
- else if (IsDigit(cy))
|
|
|
|
- {
|
|
|
|
- return 1;
|
|
|
|
- }
|
|
|
|
- else
|
|
|
|
- {
|
|
|
|
- // Do this after the digit check
|
|
|
|
- // Case insensitive
|
|
|
|
- // Normalize to Uppercase:
|
|
|
|
- // https://docs.microsoft.com/en-US/visualstudio/code-quality/ca1308-normalize-strings-to-uppercase
|
|
|
|
- var cmp = Char.ToUpper(cx).CompareTo(Char.ToUpper(cy));
|
|
|
|
- if (cmp != 0) return cmp;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // Strings are equal to that point, and y is at least as large as x
|
|
|
|
- if (y.Length > x.Length) return -1;
|
|
|
|
-
|
|
|
|
- return 0;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /// <summary>
|
|
|
|
- /// <see cref="IComparer{T}.Compare(T, T)"/>
|
|
|
|
- /// </summary>
|
|
|
|
- public int Compare(string x, string y)
|
|
|
|
- => Comparison(x, y);
|
|
|
|
-
|
|
|
|
- private static int CompareNumbers(string x, string y, int ix, out int numChars)
|
|
|
|
- {
|
|
|
|
- var xParsed = ParseNumber(x, ix);
|
|
|
|
- var yParsed = ParseNumber(y, ix);
|
|
|
|
-
|
|
|
|
- numChars = yParsed.NumCharsRead > xParsed.NumCharsRead
|
|
|
|
- ? xParsed.NumCharsRead
|
|
|
|
- : yParsed.NumCharsRead;
|
|
|
|
-
|
|
|
|
- return xParsed.CompareTo(yParsed);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- private static ParsedNumber ParseNumber(string str, int offset)
|
|
|
|
- {
|
|
|
|
- var result = 0;
|
|
|
|
- var numChars = 0;
|
|
|
|
- var leadingZeroes = 0;
|
|
|
|
- var numOverflows = 0;
|
|
|
|
- bool countZeroes = true;
|
|
|
|
-
|
|
|
|
- for (int j = offset; j < str.Length; j++)
|
|
|
|
- {
|
|
|
|
- char c = str[j];
|
|
|
|
- if (IsDigit(c))
|
|
|
|
- {
|
|
|
|
- var cInt = (c - 48); // 48/0x30 is '0'
|
|
|
|
-
|
|
|
|
- checked
|
|
|
|
- {
|
|
|
|
- long tmp = (result * 10L) + cInt;
|
|
|
|
- if (tmp > int.MaxValue)
|
|
|
|
- {
|
|
|
|
- numOverflows++;
|
|
|
|
- tmp = tmp % int.MaxValue;
|
|
|
|
- }
|
|
|
|
- result = (int)tmp;
|
|
|
|
- numChars++;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if (cInt == 0 && countZeroes)
|
|
|
|
- {
|
|
|
|
- leadingZeroes++;
|
|
|
|
- }
|
|
|
|
- else
|
|
|
|
- {
|
|
|
|
- countZeroes = false;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- else
|
|
|
|
- {
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- return new ParsedNumber(result, numOverflows, leadingZeroes, numChars);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- private static bool IsDigit(char c) => (c >= '0' && c <= '9');
|
|
|
|
-
|
|
|
|
- /// <summary>
|
|
|
|
- /// Note that the ParsedNumber is not very useful as a number,
|
|
|
|
- /// but purely as a way to compare two numbers that are stored in a string.
|
|
|
|
- /// </summary>
|
|
|
|
- private struct ParsedNumber : IComparable<ParsedNumber>, IComparer<ParsedNumber>
|
|
|
|
- {
|
|
|
|
- /// <summary>
|
|
|
|
- /// The remainder, that is, the part of the number that
|
|
|
|
- /// didn't overflow int.MaxValue.
|
|
|
|
- /// </summary>
|
|
|
|
- public int Remainder;
|
|
|
|
-
|
|
|
|
- /// <summary>
|
|
|
|
- /// How often did the number overflow int.MaxValue during parsing?
|
|
|
|
- /// </summary>
|
|
|
|
- public int Overflows;
|
|
|
|
-
|
|
|
|
- /// <summary>
|
|
|
|
- /// How many leading zeroes were there in the string during parsing?
|
|
|
|
- /// "001" has a LeadingZeroesCount of 2.
|
|
|
|
- /// "100" has a LeadingZeroesCount of 0.
|
|
|
|
- /// "010" has a LeadingZeroesCount of 1.
|
|
|
|
- ///
|
|
|
|
- /// This is important, because 001 comes before 01 comes before 1.
|
|
|
|
- /// </summary>
|
|
|
|
- public int LeadingZeroesCount;
|
|
|
|
-
|
|
|
|
- /// <summary>
|
|
|
|
- /// How many characters were read from the input during parsing?
|
|
|
|
- /// </summary>
|
|
|
|
- public int NumCharsRead;
|
|
|
|
-
|
|
|
|
- public ParsedNumber(int remainder, int overflows, int leadingZeroes, int numChars)
|
|
|
|
- {
|
|
|
|
- Remainder = remainder;
|
|
|
|
- Overflows = overflows;
|
|
|
|
- LeadingZeroesCount = leadingZeroes;
|
|
|
|
- NumCharsRead = numChars;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- public int Compare(ParsedNumber x, ParsedNumber y)
|
|
|
|
- {
|
|
|
|
- // Note: if numCharsX and Y aren't equal, this doesn't matter
|
|
|
|
- // as the return value will be either -1 or 1 anyway
|
|
|
|
-
|
|
|
|
- if (x.Overflows > y.Overflows) return 1;
|
|
|
|
- if (x.Overflows < y.Overflows) return -1;
|
|
|
|
-
|
|
|
|
- // 001 > 01 > 1
|
|
|
|
- if (x.Remainder == y.Remainder)
|
|
|
|
- {
|
|
|
|
- if (x.LeadingZeroesCount > y.LeadingZeroesCount) return -1;
|
|
|
|
- if (x.LeadingZeroesCount < y.LeadingZeroesCount) return 1;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if (x.Remainder > y.Remainder) return 1;
|
|
|
|
- if (x.Remainder < y.Remainder) return -1;
|
|
|
|
- return 0;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- public int CompareTo(ParsedNumber other)
|
|
|
|
- => Compare(this, other);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-}
|
|
|